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Forest-fire waiting times, defined as the time between successive fires above a certain size in a given region,
are obtained for Italy. The probability densities of the waiting times are found to verify a scaling law, despite
that fact that the distribution of fire sizes is not a power law. The meaning of such behavior in terms of the
possible self-similarity of the process in a nonstationary system is discussed. We find that the scaling law arises
as a consequence of the stationarity of fire sizes and the existence of a nontrivial “instantaneous” scaling law,
sustained by the correlations of the process; as a consequence, the nonstationary Poisson process model does
not account for all the complexity of the structure of fire occurrence.
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I. INTRODUCTION

Recently, many natural hazards, such as earthquakes, vol-
canic eruptions, landslides, rainfall, solar flares, etc., and
other similar-in-spirit phenomena in condensed-matter phys-
ics have been shown to be characterized by a power-law
distribution of event sizes, over many orders of magnitude in
some cases �1–4�. This kind of distribution has profound
implications for the nature of these phenomena, as it indi-
cates that extreme events do not constitute a case separated
from the smaller, ordinary ones; rather, the events are gener-
ated by a mechanism that operates in the same way for all the
different scales involved, and a characteristic size of the
events cannot be defined. In this way, a reasonable question
such as “which is the typical size of the earthquakes in this
region?” is impossible to answer.

Comparison with simple self-organized-critical �SOC�
cellular-automaton models suggests that the events that de-
fine the dynamics in these phenomena consist of a small
instability or excitation that propagates as a very rapid chain
reaction or avalanche through a medium that is in a very
particular state, similar to the critical points found at continu-
ous phase transitions in condensed-matter physics �1,5–7�.
The dissipation produced by each avalanche would act as a
feedback mechanism that balances a slow energy input and
maintains the system close to the critical state.

Of special interest is the case of forest fires, for which
cellular-automaton models yielded a power-law behavior for
the distributions of burned areas �which are a measure of the
size of the events�, and showed the previous mechanisms at
work �8,9�; curiously, it was not until much later that Mala-
mud et al. observed power law distributions for real forest
fires, with exponents around 1.4 for the probability density
�i.e., noncumulative distribution� of fire sizes �10–12�.

Nevertheless, this issue is still open, as other studies with
different data do not agree with a simple power-law behav-
ior: Ricotta et al. �13� postulated that fires of large sizes, due
to negative economic and social effects, are reduced by the
massive human intervention; therefore, less than expected
large fires occur, leading to an increase �in absolute value� of
the power-law exponent in that regime. Reed and McKelvey
�14�, using the concept of extinguishments growth rate, pre-

sented a four-parameter “competing hazards” model provid-
ing the overall best fit. In a subsequent paper, Ricotta et al.
�15� have observed that a multiple power-law behavior, de-
noted by the presence of different power-law ranges delim-
ited by cutoffs, is due to dynamical changes, linked to “more
or less abrupt changes in the landscape-specific process-
pattern interactions that control wildfire propagation, rather
than statistical inaccuracies.” Therefore, the appearance of
different size ranges with different power-law exponents can
be accounted for different dynamics, involving topographic,
climatic, vegetational, and human factors �16�.

In addition to the size of the events, the dynamics of event
occurrence is of fundamental interest. Notably, the temporal
properties of some popular SOC cellular-automaton models
were shown to be described by a trivial Poisson process,
which prevented progress in this aspect until very recently,
when it has been concluded that this picture is not appropri-
ate �17�; in parallel, it has been found that real systems show
a very rich behavior in time, with power-law distributions for
the time between events and/or scaling laws for these distri-
butions �18–20�. The existence of such scaling laws has im-
plications no less deep than the fact of having a power-law
distribution of event sizes, although they have been much
less studied: �i� the scaling law reflects the fact that the oc-
currence of large events mimics the process of occurrence of
smaller ones �and this behavior is not implicit in the distri-
bution of event sizes�, thus allowing one to model the scarce
big events on the basis of the abundant small ones; �ii� the
scaling law is the signature of the invariance of the process
under a renormalization-group transformation, which
strengths the links between natural hazards and critical phe-
nomena �21�.

II. FIRE CATALOG AND DISTRIBUTION OF SIZES

We study in this paper the relation between the temporal
properties of forest-fire occurrence and the size of the fires,
using the AIB �Archivio Incendi Boschivi� fire catalog com-
piled by the Italian CFS �Corpo Forestale dello Stato� for all
Italy �22�, covering the years 1998-2002 �included� and con-
taining 36 821 fires. The size s of each fire is measured by
the burned area, in hectares �1 ha=104 m2�. Figure 1 shows
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the size and the accumulated number of fires above a certain
size sc as a function of time; in both cases the nonstationarity
of the temporal occurrence is clear.

In order to quantify the overall behavior of fire sizes, we
measure for the whole catalog the probability density D�s� of
the burned areas, defined as

D�s� �
Prob�s � area � s + ds�

ds
, �1�

where ds is the bin size �small enough to sample almost
continuously D�s� but large enough to guarantee statistical
significance�; the resulting shape for D�s� is shown in Fig. 2.
Although a power law could be fit to the data, it is clearly
seen that the curve is continuously bending downwards,
which in a log-log scale is the characteristic of a lognormal
distribution

D�s� =
C

�2��s
exp�−

�ln s − ��2

2�2 � � � e�

s
�1+ln�s/e��/2�2

,

�2�

with � and � the mean and standard deviation of ln s, and C
a correction to normalization due to the fact that the fit does
not extend for all s. In this way, for each 2�2 that ln s is away
from � the exponent of the previous pseudopower law in-
creases in one unit �in other words, each decade s is above e�

increases the exponent in ln 10 / �2�2��. When s is measured
in hectares, the results of the best fit yield �=−0.35, �
=9.5, and C=6.7; this fit holds not only for the full data but
it can be verified that also describes approximately smaller
parts of the country and shorter periods of time. Neverthe-
less, it is convenient to repeat that the lognormal fit is not
supposed to be valid for all sizes, but only for a certain
range, as the figure shows. In particular, the use of the log-
normal distribution has not to be interpreted as implying that
the distribution has a maximum. On the other hand, we have
no means to conclude if the deviation from a power-law
behavior is due to human extinction efforts or to the territo-
rial characteristics of a high-populated country, as it is the
case of Italy.

III. SCALING OF WAITING-TIME DISTRIBUTIONS
AND SELF-SIMILARITY

From the distribution of sizes, knowing the total number
of events in a certain time period, it is possible to calculate
the mean waiting time �or recurrence time� for events above
a certain size sc �12�. However, looking at the individual
values of the waiting times one sees that they are broadly
distributed and therefore the mean values are not very infor-
mative about the dynamics of the process. Therefore, in or-
der to investigate the temporal properties of fire occurrence it
is necessary to look at the whole waiting-time distribution.
To be precise, the procedure is as follows: once a spatial
area, a time period, and a minimum event size sc are se-
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FIG. 1. �Color online� �a� Size of fires in Italy, in hectares,
versus time of occurrence t. It can be seen how the largest fires are
above 1000 ha burned. �b� Accumulated number N�t ;sc� of fires
with size s�sc in Italy as a function of time, for several sc. Note
that N�t ;sc�=	tini

t r�t ;sc�dt, with tini=1998 and r�t ;sc�dt the number
of fires in an interval around t with s�sc. Both plots show the
nonstationary character of fire occurrence in time.
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FIG. 2. �Color online� Probability density of fire sizes in Italy,
from 1998 to 2002 �included�. The error bars are calculated for one
standard deviation in the number of counts. The fit is the lognormal
distribution whose parameters are given in the text.
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lected, the fire history is described as a simple point process

t0 , t1 , t2 , . . . �, where ti denotes the time of occurrence of fire
i, see the x axis of Fig. 1�a�. For this process, the set of
waiting times, defined as the time intervals between consecu-
tive events, is obtained straightforwardly as 	i� ti− ti−1, for
i=1,2 , . . ., etc. Important insight into the nature of the pro-
cess may be achieved by considering sc not as a constant but
as a variable parameter �19,23�, and then, the waiting-time
probability density for the selected window, defined in the
same way as in Eq. �1�, will be also considered as a function
D�	 ;sc� of the minimum size sc.

For the whole country and the total temporal extension of
the catalog we obtain the different set of curves displayed in
Fig. 3�a�. We might fit a �decreasing� power law for each
distribution D�	 ;sc��1 /	
, but the exponent 
 would de-
crease with the increase of the minimum size sc. Instead, it is
more convenient to rescale the distributions in order that all

of them have the same mean and can be properly compared;
this is accomplished by the scale transformation 	→R�sc�	
and D�	 ;sc�→D�	 ;sc� /R�sc�, where R�sc� is the rate of fire
occurrence, defined as the mean number of fires per unit time
with s�sc �that is, the inverse of the mean of each waiting-
time distribution�. Notice that the rescaled axes turn out to be
dimensionless. As mentioned above, the mean waiting time,
and therefore the rate, can be obtained from the fire-size
distribution; this is done as R�sc�=R�0�	sc

�D�s�ds, where
R�0� accounts for the fires whose size is s�0, i.e., all fires.
The results of the rescaling, as shown in Fig. 3�b�, lead to a
reasonable collapse of the rescaled distributions into a single
function F �the scaling function�, signaling the approximate
fulfillment of a scaling law

D�	;sc� = R�sc�F„R�sc�	… , �3�

in the same way as for several natural hazards �19,20,24� and
other avalanchelike processes �25,26�. Note that one might
think that it does not make sense to study waiting times over
large spatial regions, as the pooled output of many indepen-
dent process tends to a Poisson process �27�; however, in the
case of earthquakes a global, worldwide perspective has
proven very robust to provide consistent nontrivial results,
clearly different from a Poisson process �19�, and allowing
an interesting estimation of the ratio between triggering and
triggered events �28,29�. We will show here that in the case
of forest fires the scaling law has also a nontrivial origin.

The rescaled plot unveils more clearly the behavior of the
distributions: instead of different power laws, what we have
is a unique shape, but at different scales. Again, the apparent
continuous decrease of the exponent with the rescaled time
��R�sc�	, suggests a lognormal shape for F��� as that of
Eq. �2�, where now we will use tildes to denote the param-

eters. The best fit yields �̃=−2.0 and �̃=2.0, fixing C̃�1.
Notice that now we have the constraint that the mean of the

rescaled distribution �̄ has to be one ��̄=R�sc�	̄�1�; as �̄

=e�+�2/2 for a lognormal, this leads to �=−�2 /2.
It is remarkable that, unlike earthquakes, solar flares, or

fractures �19,20,26,30�, forest fires fulfill a scaling law for
the waiting-time distributions without displaying power-law
distribution of event sizes. We could conclude that we have
self-similarity in size-time without having scale invariance in
size alone. This self-similarity means that for the linear scale
transformation 	→a	 and sc→bsc, the value of b which
guarantees scale invariance is given by R�bsc�a=R�sc�,
which means that b does not only depend on a, as in the case
of a power-law distribution of sizes, but it also depends on sc
�31�. This would be equivalent to define an artificial new size
variable enforcing that it be power law distributed. However,
although this picture describes a kind of self-similarity, it is
not a sufficient condition. Indeed, the seasonality of fire oc-
currence prevents self-similarity in size-time: five years of
fire occurrence cannot be equivalent to one year of smaller
fires, as there is a clear annual modulation in fire occurrence;
nevertheless, for a fixed time window still the small events
are a model for the occurrence of the big ones.
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FIG. 3. �Color online� �a� Probability densities of fire waiting
times for Italy, from 1998 to 2002 �included� for different minimum
burned areas �sc=1 ha to sc=300 ha�; waiting times smaller than
5 min are not plotted. The slope of the tail seems to decrease with
increasing sc. �b� The previous densities after rescaling by the mean
fire rate, adding error bars �corresponding to one standard devia-
tion�. The data collapse indicates the existence of a scaling law �see
text� and allows a unified description of the shape of the density, in
terms of a lognormal distribution, rather than as a power law. Notice
that the rescaling yields dimensionless axes.
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IV. ORIGIN OF THE SCALING LAW

Why does the scaling law �3� for the waiting-time distri-
butions appear? It is possible to relate it with the stationarity
of fire sizes and with the existence of a scaling law for the
“instantaneous” waiting-time distributions. Indeed, D�	 ;sc�
is a statistical mixture of those instantaneous waiting-time
distributions Dt�	 ;sc�, which, when the scale of variations of
the rate is much larger than the corresponding mean waiting
time, take into account that fire occurrence is not stationary
but change with time t; i.e., at each time we have a different
instantaneous waiting-time distribution Dt�	 ;sc�. If it is only
the instantaneous rate r�t ;sc� �defined as the number of fires
per unit time in a small time interval around t� what deter-
mines fire occurrence, we can write Dt�	 ;sc�
=D(	 ;sc �r�t ;sc�) and then

D�	;sc� =
1

R�sc�


rmin

rmax

rD�	;sc�r��r;sc�dr ,

where �r ;sc� is the density of rates, i.e., the fraction of the
time the rate is in a particular small range of values, divided
by that range �32�. Assuming the stationary nature of fire
sizes, which means that D�s� does not change with t �notice
that this is not incompatible with the nonstationarity of time
occurrence�, this implies that r�t ;sc�= pr�t ;s0�, where the
fraction p is the probability of having a fire larger than sc
knowing that it has been larger than s0, p=Prob�s
�sc� /Prob�s�s0�; therefore, the density of rates fulfills a
scaling law �r ;sc�= p−1�p−1r ;s0�� p−1g�p−1r�, with a scal-
ing function g. Finally, with the hypothesis that D�	 ;sc �r�
verifies as well a �instantaneous� scaling law D�	 ;sc �r�
=rf�r	�, which means that the instantaneous distributions
keep the same shape for different sc, given by the scaling
function f , we get

D�	;sc� =
1

pR0


pa

pb

rf�r	�p−1g�p−1r�dr ,

with rmin= pa, rmax= pb, and R�sc�= pR�s0�� pR0. A simple
change of variables reveals that D�	 ;sc� is a function of the

form pF̃�p	�� p	a
bx2f�p	x�g�x�dx, which is equivalent to the

scaling law �3�. In other words, if fire occurrence under hy-
pothetical stationary conditions verifies a scaling law for the
waiting times �which in this case would be a reflection of the
self-similarity of the stationary process, as explained above�,
nonstationary conditions keep that scaling valid �with a dif-
ferent scaling function� as long as fire size remains stationary
and the rate does not become too small for this description to
be invalid. �On the other hand, for rates so small that the
mean waiting time is much larger than the larger scale of
variation of the rate itself �whose existence is not known for
fire occurrence�, the structure of r�t ;sc→�� would become
irrelevant and the waiting-time distribution would tend to the
exponential form characteristic of Poisson processes.�

In order to support our argument for the existence of the
scaling law �3� we show in Fig. 4 the stationarity of fire sizes
for small to medium fires, by means of the evolution of
r�t ;sc� for different sc, and how the different curves collapse

when they are rescaled by their mean R�sc�; an alternative
observational proof could be obtained by collapsing the cu-
mulative curves of Fig. 1�b�. It is also easy to check that the
distribution of rates verifies a scaling law. The other hypoth-
esis, the scaling of D�	 ;sc �r� is more difficult to demonstrate
due to the daily oscillations of r�t ;sc�, which makes that the
rate can be considered approximately constant only for a few
hours, corresponding to those of the daily maximum and
minimum hazard �between 1 and 4 p.m. and between 1 and 9
a.m., respectively�. This short range of variation leads to
very low statistics; nevertheless, for the periods of the year
of maximum fire occurrence �for about one month in the
summer� the maximum and minimum daily rates are fairly
constant for different days, which allows one to improve the
statistics. The results obtained in this way are shown in Fig.
5, although they are not conclusive. Essentially, they are
compatible with an instantaneous scaling law, with perhaps
an exponential instantaneous distribution D�	 ;sc �r��re−r	,
but the statistical errors are large; in any case, the hypothesis
of the instantaneous scaling law cannot be rejected.

V. INADEQUACY OF THE NONSTATIONARY POISSON
PROCESS AND CORRELATIONS

If we do not reject an exponential form for the instanta-
neous distributions, does this mean that the dynamics can be
described by a nonstationary Poisson process? This is the
simplest model for nonstationary behavior, for which the
events take place at a rate that does not depend on the oc-
currence of the other events, as in the simple �stationary�
Poisson process, but with the difference that the rate changes
with time �independently on the process, we can imagine the
rate is related to the meteorological conditions, not affected
by the presence of fire or not�. This leads indeed to exponen-
tial instantaneous distributions �provided the rate is not too
small�, although the reciprocal is not true, in general. If, in
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FIG. 4. �Color online� Monthly rates of forest-fire occurrence in
Italy as a function of time, for events larger or equal than sc, with sc

ranging from 1 ha to 30 ha �top curves�. In addition, the rescaling
of the rate by their mean R�sc� is shown �bottom collapse of curves,
dimensionless�, indicating the nearly stationarity of fire sizes �for
the small to intermediate sizes analyzed� as well as the nonstation-
ary occurrence in time.
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addition, the size of the events constitutes an independent
stationary random process, this ensures the existence of a
scaling law for the instantaneous distributions, as Poisson
processes are invariant under random thinning plus rescaling,
see Ref. �21�. We note that the nonstationary Poisson process
has been recently used to fit earthquake occurrence, see Ref.
�33�, although it is clear that the earthquake rate changes as a
consequence of earthquake occurrence. In any case, in the
remaining we are going to show that important aspects of fire
occurrence cannot be described by the nonstationary Poisson
process since correlations are relevant in the fire-occurrence
dynamics.

A test to verify if a process is of the nonstationary Poisson
type was introduced by Bi et al. �34�. One only needs to
compute for each i the statistics hi�2	mini / �2	mini+	neigi�,
where 	mini is the minimum of 	i and 	i+1, and 	neigi is the
length of the interval neighbor of the minimum one opposite
to the one used in the comparison, i.e., 	neigi=	i−1 if the mini-
mum is 	i and 	neigi=	i+2 if it is 	i+1. Under the hypothesis
we want to test, both 	neig and 2	min are independent and
exponentially distributed with approximately the same rate
r�t ;sc� and therefore it can be shown that h is uniformly
distributed between 0 and 1.

The application of the test to the fire data yields cata-
strophic results, see Fig. 6. The obtained probability density
for h is far from uniform, with very large peaks for precise h
values. This is due to the discretization of temporal occur-
rences of fires in the catalog, which are determined verbally
and therefore rounded mainly in units of 10 or 15 min; this
favors particular values of 	 and therefore of h �2 /3 for
	mini=	neighi, 4 /5 for 	mini=2	neighi, 1 /2 for 	mini=	neighi /2,
etc.�. We can correct this effect by the addition of a uniform
random value between −5 min and 5 min to each occurrence
time ti, then the peaks in the distribution of h disappear and

its shape gets closer to a uniform one; however, the differ-
ence is still significant. We have verified that the difference is
not due to the random addition we have performed: simula-
tion of a nonstationary Poisson process where the occur-
rences are rounded in intervals of 10 min yields a nearly
perfect uniform distribution when this discretization is cor-
rected by the uniform random addition just explained �Fig.
6�. In consequence, this model does not seem suitable for fire
occurrence, and although the instantaneous distributions are
close to exponential �Fig. 5�, this is not a sufficient condition
to have a nonstationary Poisson process, as the absence of
correlations is equally important for it.

If we reject the nonstationary Poisson process with inde-
pendent sizes as a model of fire occurrence, the only way to
get a scaling law for the instantaneous process is by means of
orchestrated correlations between sizes and occurrence times
�21�. In order to establish the existence of such correlations
we proceed to study conditional size distributions, defined as
in Eq. �1� but with an additional condition for the computa-
tion of the probability. We consider first D�s �spre�sc��, which
accounts for the size of the events for which the size of the
immediate previous-in-time event spre is above a given
threshold sc�. The results in Fig. 7�a� show that an increase of
sc� triggers a greater proportion of large fires, i.e., large fires
are followed by large fires. The dependence of a fire size on
the previous size is small but significant, unlike to what hap-
pens for earthquakes, where correlations between their mag-
nitudes have not been detected �35,36� �nevertheless, for an
alternative view see Refs. �37,38��. On the other hand, the
dependence of waiting times on the size of the event defining
the starting of the waiting period can be measured by
D�	 ;sc �spre�sc�� and is displayed in Fig. 7�b�, showing how
large fires cause a decrease in the number of long waiting
times after them, i.e., those fires tend to be closer in time to
the next fires. The effect is again small, but clearly detect-
able, and in this case has a counterpart for earthquakes,
where the Omori law for aftershocks implies the same be-
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FIG. 5. �Color online� Rescaled distributions of waiting times
during annual maximum rate periods, corresponding �in years� to
1998.50-1998.65, 1999.60-1999.66, 2000.56-2000.67, and 2001.54-
2001.64 �same symbols� separated for daily minimum rate, 1
a.m.–9 a.m. and maximum, 1 p.m.–4 p.m. Compare these time pe-
riods with the steepest increases in Fig. 1�b�. Different minimum
sizes are used, sc=1, 3, or 10 ha. The exponential scaling function
e−x is shown for comparison. Both axes are obviously
dimensionless.
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FIG. 6. �Color online� Probability densities of the statistics h,
for the original catalog with s�1 ha, for the smoothed catalog �la-
beled as corrected�, and for a simulation of a nonstationary Poisson
process with the same rate as the real process to which a discreti-
zation and the same smoothing procedure have been applied.
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havior. Summarizing, we find that a large fire causes the
waiting time up to the next fire to be small, and the size of
this fire to be large as well, on average.

But the correlations between fires are not only with the
previous event; its range can be quantified by means of the
following autocorrelation function:

c�j ;sc� � ��ln si − l̄�sc���ln si+j − l̄�sc����l�sc�−2,

where l̄�sc� is the arithmetic mean of the logarithm of the size

for sizes above sc, l̄�sc���ln s� for s�sc �i.e., the logarithm
of the geometric mean of the size�, and �l�sc� is the standard

deviation of the logarithm �l
2�sc����ln s− l̄�sc��2�. Notice

that although the process is not stationary, the stationarity of
the size gives sense to the autocorrelation function defined in
this way. The results for this function are shown in Fig. 8,
and compared with the same correlation function calculated
for a reshuffled version of the catalog, for which the size of
the events are randomly permuted, breaking the correlations
between them �which should yield an autocorrelation func-
tion fluctuating around zero�. The conclusion is that positive
correlations extend significantly beyond several hundreds of
events �for events of size larger than 1 ha�.

The behavior of the autocorrelation as a function of time
is still more clear than as a function of fire number; as the
process is not stationary in time both functions are not
equivalent. We define

c̃��;sc� � ��ln s�t� − l̄�sc���ln s�t + �� − l̄�sc����l�sc�−2,

where s�t� denotes the size of the fire that happens at time t
�we slightly change notation, for convenience�. The average
is taken over all times t and t+� for which there are fires,
this yields the results of Fig. 8. The correlation is again posi-
tive, but larger in this case, suggesting that real time is a
better variable to describe the evolution of correlations,
which extend for about 10 000 min, i.e., roughly 1 week. It
is likely that these correlations are mediated through the me-
teorological conditions.

VI. CONCLUSION

In summary, the dynamics of forest-fire occurrence shows
a complex scale-invariant structure at any time, modulated
by seasonal and daily variations and orchestrated by means
of broad-range correlations.
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FIG. 7. �Color online� �a� Conditional probability densities of
fire sizes in Italy when the previous fire has size spre larger than �or
equal to� sc�, for sc�=1, 30, and 100 ha. Only fires greater than 1 ha
have been taken into account. The case spre�1 ha is essentially the
unconditioned distribution shown in Fig. 2. The type of change of
the conditional distributions with respect the unconditioned case is
an indication of positive correlations between fire sizes. �b� Condi-
tional probability densities of waiting times when the size of the fire
initiating the waiting period spre is larger than several values of sc�,
for s�1 ha, as above. Again, spre�1 corresponds to the uncondi-
tioned case, this time shown in Fig. 3�a�. The change in the distri-
butions shows the negative correlations between the initiating size
and the waiting time.
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FIG. 8. �Color online� Autocorrelation functions for the Italian
catalog and for a version with reshuffled sizes. In the latter case it is
the modulus of the autocorrelation what is shown, as the function
fluctuates around zero and it is equally likely that it is positive or
negative. Notice that both j and the correlation functions are dimen-
sionless, although the size is measured in hectares.
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